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Analysis of Surface Heating by Induction 
A.Z. Sahin 

An analytical solution of the transient temperature distribution of an electrically conducting material ex- 
posed to electromagnetic radiation is obtained. The solid material is assumed to be semi-infinite with a 
specified initial uniform ambient temperature. The surface is assumed to be subjected to convective heat 
losses. However, adiabatic surfaces boundary condition and specified surface temperature boundary 
condition are also treated as special cases. The effect of the applied current frequency is discussed, and 
the temperature rise during high-frequency electromagnetic heating, which is of particular importance 
in surface modification of materials, is investigated. 
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1. Introduction 

HEATING by means of electromagnetic waves has wide appli- 
cation in industry--for example, microwave ovens, and induc- 
tion furnaces for melting and surface modification purposes. 
Induction heating systems offer a number of  advantages over 
furnaces. Energy savings are provided through fast heating and 
high production rates. Other advantages include ease of  auto- 
mation and control, low maintenance requirements, and quiet, 
safe, and clean working conditions (Ref 1). 

Numerous analytical and experimental studies of  heat trans- 
fer through electromagnetic heating have been conducted in re- 
cent years. When electromagnetic energy is sent through the 
exposed surface, depending on the frequency applied, a spa- 
tially varying heat generation occurs inside the electrically 
conducting material. If the surface is exposed to an ambient at- 
mosphere and convection and/or radiation occurs, then it is 
most likely that the maximum temperature lies inside the mate- 
rial and not on the surface. Therefore, the initiation of  phase 
changes and the volume expansion that is due to the phase 
change occur inside the material, rather than at the surface. This 
affects the surface characteristics during the surface treatment 
process and may also cause residual stresses to build up and mi- 
crocracks to develop. 

One-dimensional transient heat conduction analysis in a 
slab for induction heating is described by Sahin et al. (Ref2). In 
their solution, the slab material was assumed to be insulated 
and no steady-state solution was obtained. However, in prac- 
tice, insulation may not always be possible. Then, the Biot 
number (Bi) plays an important role during the heating process 
as a controlling parameter. The present study provides an ana- 
lytical solution of  the transient temperature distribution of  an 
electrically conducting material exposed to electromagnetic ra- 
diation. The solid material is assumed to be semi-infinite with a 
specified initial constant ambient temperature. The surface is 
assumed to be subjected to convective heat losses. However, an 
insulated surface boundary condition and a specified surface 
temperature boundary condition are also treated as special 
cases. 

A.Z. Sahin, Department of Mechanical Engineering, King Fahd Uni- 
versity of Petroleum and Minerals, Dhahran 31261, Saudi Arabia. 

2. Problem Statement 

A semi-infinite electrically conducting material is to be 
heated from the surface by induction heating. The governing 
differential equation for the current density, J (AJm2), in this 
conducting material is derived from Maxwell's equations and 
is (Ref 3): 

V 2 j =  I "t ~J 
p bt (Eq 1) 

where I1 is magnetic permeability and p is electrical resistivity. 
It should be noted that ~t = ~t01ar, where I.t 0 = 4r~ 10 -7 and ~t r is the 
relative permeability, which is a function of  the magnetic inten- 
sity (Ref 3). In a one-dimensional case and for a sinusoidally 
varying current in the form: 
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thermal diffusivity (m2/s) 
hS/2k, dimensionless Biot number 
to/2~, frequency (Hz) 
heat-transfer coefficient (W/m 2 K) 
current density, Aim 2 
thermal conductivity (W/mK) 
surface power density (W/m 2) 
dimensionless local heat flux 
heat generation rate (W/m 3) 
time (s) 
temperature, K 
ambient temperature (K) 
position in the material (m) 
depth of  penetration (m) 
magnetic permeability (f~s/m) 
reference magnetic permeability 

(= 4~10 -7 ~s/m) 
Ix/p. 0, relative permeability 
electrical resistivity (f~m) 
angular frequency (l/s) 
( T -  T**)/(~P/2k ), dimensionless temperature 
4at~82, dimensionless time 
2x/~, dimensionless coordinate 
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J(x, t) = J(x) cos (tOt) = Re[J(x)e it~t] (Eq 2) on the surface and: 

wherex is the distance into the material from the surface and Re[rl] 
represents the real part of a function rl, Eq 1 is reduced to: 

d2J iool.t 
- -  J (Eq  3)  dx 2 p 

The general solution of  Eq 3 is given by: 

J(x )=Clexp( i '~x)+C2exp( - i~x)  (A/m 2) 

(Eq 4) 

The boundary conditions are: 

J(0) = Js (Eq 5) 
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Fig. 1 Penetration depth as a function of frequency at 20 ~ 
and la r = l0 for several materials 
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Fig. 2 Energy generation fraction inside the material due to in- 
duction heating as a function of distance from the surface 

j(oo) = finite (Eq 6) 

where Js is the value of the current density at the surface. 
The solution of  Eq 3 that satisfies the boundary conditions 

(Eq 5 and 6) is: 

J(x)=Jsexp(- i~xl=Jsexpl-~-{~] (Eq 7) 

where 

= -X/-" (Eq 8) 
lxto 

is the penetration depth in which 86.5% of  the power consump- 
tion takes place (Ref 3). It should be noted that an increase in 
the angular frequency, to, decreases the penetration depth, 5. 
This is a very important parameter in surface treatment proc- 
esses. Figure 1 shows the variation of  penetration depth, 5, with 
frequency, f =  to/2n (hertz), for different materials at an ambi- 
ent temperature of  T.. = 20 ~ and relative permeability ofl.t r = 
~t/B0 = 10. The electrical resistivity values at 20 ~ for the ma- 
terials shown in Fig. 1 are 0.695, 0.16, 0.027, and 0.017 ~tf~m 
for stainless steel (19.11% Cr, 8.14% Ni, and 0.6% W), mild 
steel (0.23% C), aluminum, and copper, respectively. 

In the range of  commercial frequencies (50 to 450 kHz), the 
penetration depth of mild steel (0.23% C) varies from 3 mm to 
100 Ixm at 20 ~ The penetration depth can be less than 100 ~tm 
for copper and aluminum if the frequency is increased above 50 
kHz. 

The heat generation due to the current density given by Eq 7 
is: 

q = p l J ( x ) 1 2 = 2 ~ e x p ( - 2 ~ )  (W/m 3) (Eq 9) 

where P is the surface power density or, in other words, the 
total power consumption per unit surface area, which is 
given by: 

P = ~ qdx (W/m 2) 
0 

The generation of  heat inside the material due to induction 
heating is plotted against the depth from the surface in Fig. 2. It 
is clear that within one penetration depth (x = 5), the heat gen- 
eration rate drops by 86,5% of its value at the surface. In gen- 
eral, the heat generation is practically negligible beyond two 
penetration depths (x > 25). 

The governing partial-differential equation for the transient 
one-dimensional temperature distribution in the semi-infinite 
domain with heat generation has the form: 
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l Dr ~2r 
a 0--t'-~x 2 + k (Eq 10) 

where a is the thermal diffusivity, k is the thermal conductivity, 
and//is the heat generation given by Eq 9. 

The material is assumed to be initially at the uniform ambi- 
ent temperature: 

T(x, O) = Too (Eq 11) 

The boundary conditions are: 

~T(O, t) 
- k  ax - h[T** - T(O, t)] (Eq 12) 

and 

T(~o, t) = finite (Eq 13) 

Note that h = 0 and h ---) ~ in Eq 12 correspond to the adiabatic 
surface and the constant surface temperature cases, respec- 
tively. 

3. Solution for Temperature Profile 

Following the procedure given by Sahin (Ref 4), the solu- 
tion for the problem presented is: 

r, p f  r x'~ 1 (4at + 2 x') 
T ( x ' t ) = T * * + ' ~ l - e x p l - 2 - g ) + - 2 e x p t ~ 2  8J 

(2"4r~ x ~ 1 (4at .'x'~ 

x 1 2k �9 erfc/2~-t  2~-at'/- / +8-h]exp[(hl2a/+ 

" erfc(h "vr~- + 2-~tat ) + (1 + ~hk) erfc (2-~at) 

hx] 

exp ~- at + 8h - 2k -~ x erfc 

-/~h~_h2kl exp t~2t + 2~/erfc ( ~ -  + 2~at  1} 

(Eq 14) 

where erfc (11) is the complementary error function given by: 

erfc(rl)= 1 - e r f ( ' q ) = ~ - f q  e-~Zd~ 

Equation 14 can be nondimensionalized by using the fol- 
lowing dimensionless parameters: 

r - r ~  
0 - -  (Eq 15) 

(6P/2k) 

=x__ 
8/2 (Eq 16) 

4at 
x = ~ (Eq 17) 

~ O  

h8 
B i -  2k (Eq 18) 

where Bi is the Blot number. It should be noted that the charac- 
teristic length is selected to be one-half of the penetration 
depth, 8/2, within which the fraction of the power generation 
occurring is: 

, dx 
P8/2 0 

P j" , dx 
- - -  1 - 1 = 0.632 (Eq 19) 

e 

that is, 63% of the total power generation. 
The temperature distribution as a function of these dimen- 

sionless parameters now becomes: 

0(~, x) = -exp (-~) + 1 exp(x - ~) erfc (~-x - ~ ]  

- ~ ~.Bi _-----~/exp (x + ~) erfc + 

(Bi + I'~ /2_~x / 1 +L-w-, j 
�9 exp (Bi2x + Bi~) erfc (Bi'~-~ + 2-~x ) (Eq 20) 

The temperature distribution, 0, in Eq 20 is plotted in Fig. 3 
with respect to dimensionless distance, ~, for selected values of 
dimensionless time, "~, and Bi = 0.005. 

Consider a mild steel (0.23% C) sample to be heated by in- 
duction using 103 Hz frequency with a power density o fP  = 25 
MW/m 2. The penetration depth, ~i, is determined to be about 2 
x 103 m using Fig. 1 or Eq 8. Therefore, a surface temperature 
increase of 1000 ~ which corresponds to 

2k 2 x 26 
0 = ~-~ ( T -  T**) = x 1000 ~ 1 

2 xl0 -3 x 25 x 106 

is obtained at x ~ 3; that is: 
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Fig. 3 Temperature rise during induction heating 
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t=-'~aX= 4 x  3.8648 x 10 -6 
• 3 = 0.78 s 

The heat-affected zone (HAZ) extends up to ~ ~ 4; that is, x 
2 8 = 4 x  10-3m = 4 mm. 

Using a frequency of  105 Hz in this example, the penetration 
depth, ~5, is found to be 2 x 10 4 m. In this case, a surface tem- 
perature increase of 1000 ~ for the same power density used 
before corresponds to 

2 x 2 6  
0 -  x 1000 = 10 

2 x 10 -4 • 25 x 106 

which gives x ~ 100; that is: 

t ~  (2 • 10-4) 2 • 100 = 0.26 s 
4 x 3.8648 x 10 -6 

Here the HAZ extends up to ~ - 20; that is, x - 10~ = 2 x 10 -3 
m = 2 mm. The HAZ can be further decreased by increasing the 
applied frequency. 

4. Local Heat Flux 

The dimensionless local heat flux can be defined as: 

-k(dT/dx) DO q"= - -  - (Eq 21) 
P De 

Then, the local heat flux as a function of the nondimensional 
parameters (Eq 15 to 18)is: 

q"(~,x)=-exp(-~)+ l(Bi+l~ I ~x 2~x I ~B--~_ 1 ~exp (x + ~) erfc + 

1 5) , 
+ ~ exp (~ - ~) erfc - (Bi - 1) 

�9 exp (Bi2~ + Bi~) erfc (Bi~-x + 2-~x ) (Eq 22) 

Note that the heat flux at the surface 

q"(0, x ) = - 1  + ( ~ )  exp(x) erfc (~- )  

1 exp(Bi2x) erfc (Bi~-x) (Eq 23) 
( B i -  1) 

varies from 0 for z = 0 to -1  for x ~ oo. Therefore, the local heat 
flux on the surface is never zero for t > 0. This shows that the 
maximum temperature occurs inside the material, and the loca- 
tion of  the maximum temperature is the value of ~ that makes 
Eq 22 zero. 

5. Steady-State Solution 

For x ---> oo, the temperature profile (Eq 20) gives: 

B i + l  
0(~) = Bi e-~ (Eq 24) 

The steady-state surface temperature is therefore: 

1 
o(~  = o)  = (Eq 25) 

while the maximum steady-state temperature in the material is: 

1 
0(~ ~ co) = 1 + - -  (Eq 26) 

Bi 

This is the maximum temperature inside the material that can 
be obtained during electromagnetic heating. 

Steady-state local heat flux is obtained from Eq 22 by sub- 
stitufing x --~ oo: 

q"(~) = -e-~ (Eq 27) 

and the steady-state heat flux becomes: 

q'(~ = 0) = -1 (Eq 28) 

as expected. 
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6. High-Frequency Solution 

When the applied frequency, co, is increased, the penetration 
depth, 8, decreases. In the limit when to --, oo, no penetration 
occurs and all the energy is concentrated on the surface of  the 
material, diffusing inward by conduction. However, in this 
case, the governing partial-differential equation and the bound- 
ary conditions become: 

3T ~2T 

Ot - a oqx2 

T(x, O) = T~ 
~T 

-k  -~x (0, t) = h[roo - T(O, t)] + P 

(Eq 29) 

T(oo, t) = finite 

where P is the surface heat flux. 
To obtain the solution of  the earlier problem, let 

P r  r = - ~  

Thus, the formulation is converted into: 

3r ,92r 
- -  = a - -  (Eq 30) 
Ot oqx 2 

P 
r o) = --- 

h 

-k  ~x ~ (0, t) + he(0, t) = 0 

•(oo, t )=f ini te  

whose solution can be shown to be (Ref 5): 

Ph~ (-~at) (h h2at'~ r ere + exp ~-  x + ---~-) 

tx /l erfc - -  + ~ ~ -  (Eq 31) 
24-a7 

Therefore, the temperature rise in this case is determined to be: 
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Temperature rise during induction heating for tD ~ co 

which is constant and inversely proportional to the heat-trans- 
fer coefficient, h. 

The temperature rise for the high-frequency, to ---) to case is 
plotted as function of  distance for selected rimes n Fig. 4 using 
the same dimensionless quantities and Bi number as in Fig. 3 
for comparison. The temperature gradient in the vicinity of the 
surface is higher for high frequencies as expected. It should be 
noted that for the case of to --~ oo, the penetration depth is zero. 
Therefore, the value of ~i used to generate Fig. 4 is a selected ar- 
bitrary characteristic thickness, which helps to nondimension- 
alize Eq 32. 

The dimensionless local heat flux, on the other hand, is: 

(kh h2at I ~l_~at h qr-a-f] q"( x, t ) = -k( dT/dx--------~ ) + - 7  -~ p = exp x eric + 

(Eq 33) 

It should be noted that the surface heat flux 

I q"(x=O)=exp[---~-~erfc ~af 

is an exponentially decaying function and varies from 1 at t = 0 
to 0 at t ---) o o .  Therefore, the maximum temperature occurs on 
the surface all the time. 

T - r =  
= erfc P/h (2__~at/_exp/h x +---~-~erIc ~ ~ - ~ a t h 2 a t ~ ( x  +h.~fl 

(Eq 32) 

It should be noted that the temperature distribution for long 
time as t ---) to is: 

P r -  r = - ~  

7. Special Cases 

7.1 Constant Surface Temperature 

A specific constant surface temperature, T~, corresponds to 
h --) to in the previous analysis. From Eq 20 the temperature 
profile in the semi-infinite domain in this case is determined to 
be: 
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 xp, 

/ 5/1 l �9 erfc + + ~ exp(x - ~) erfc - 

(Eq 34) 

The steady-state temperature profile in this case is: 

0(~) = 1 - e ~  (Eq 35) 

which means the maximum temperature is: 

0(~ --> co) = 1 (Eq 36) 

From Eq 22, the local heat flux variation in the material is 
found to be: 

q"(~, x) = -exp (-~) + -~ exp (x + ~) erfc + 

+ 1 exp (x - ~) erfc ( '~- - 2-~x / (Eq 37) 

Heat flux on the surface in this case is: 

q"(O, z) = -1 + exp (z) erfc ('x~-) (Eq 38) 

Steady-state local heat flux variation and the steady-state sur- 
face heat flux are the same as Eq 27 and 28, respectively. 

7.2 Adiabatic Surface 

In the case of adiabatic surface boundary condition, there is 
no steady-state solution. However, the solution of the problem 
in this case is given to be (Ref 5): 

0(~, "~) = -exp (-~) + 2"~-~ [ ~ -  exp/-4~z-~)- 2-~- erfc ( 2~z / ]  

+ -~ exp(x + ~) erfc + ~ x  2 exp(x - ~) 

For high frequency (to ---> oo, ~ .--) 0): 

T= T~ + Zk-- ~ ~ -  exp ( - x 2 ]  - x  ~ 4at) 2 erfc (Eq40) 

Note that the temperature of  the surface increases continuously 
with time, since: 

T(x=O)=T~ +~k ~ t  

and this is the maximum temperature in the material during the 
induction heating process. 

8. Conclusions 

An analytical solution of the transient temperature distribu- 
tion of an electrically conducting material exposed to electro- 
magnetic radiation is obtained�9 The solution is carried out for 
the case where the surface is exposed to an ambient with con- 
vective heat losses�9 Due to the effect of  convection on the sur- 
face, the maximum temperature is found to occur inside the 
material and not on the surface except for very high applied 
current frequencies. High-current frequency causes a decrease 
in the penetration depth and therefore yields large temperature 
gradients close to the surface of the material. The solutions for 
high heat-transfer coefficient and adiabatic surface boundary 
conditions are treated as special cases. 
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